Calculus Scope & Sequence

Unit 1 Preview of Calculus

Objectives SWBAT:	Learning Objectives	Essential Knowledge
Explore the instantaneous rate of change of a function	LO2.1A	EK2.1A1, EK2.1A2, EK2.1A5,
Find average rates using two points very close	LO2.1B	EK2.1B1
together to estimate instantaneous rates of change	LO2.3A	EK2.3A1, EK2.3A2
Recall graphs of familiar functions	LO2.3B	EK2.3B1
Use tangent lines to determine how fast a function is		
changing at a point		
Discover what a definite integral is	LO3.2B	EK3.2B1
Estimate a definite integral by approximating area		
under the curve		
Estimate definite integrals using trapezoidal sums	LO3.2B	EK3.2B2

Unit 2 Limits and Continuity

Objectives SWBAT:	Learning Objectives	Essential Knowledge
Find and compare average and instantaneous rates of	LO1.1A(a) and (b)	EK1.1A1
change	LO1.1B	EK1.1A3
Define limits and use proper notation	LO1.1C	EK1.1B1
 Find limits using direct substitution, tables, and graphs 		EK1.1C1, EK1.1C2
Find one-sided and two-sided limits	LO1.1A(a) and (b)	EK1.1A2, EK1.1A3, EK1.1B1
Find limits of piecewise functions without graphs	LO1.1C	EK1.1C1, EK1.1C2, EK1.1D1
Identify horizontal and vertical asymptotes	LO1.1D	
Use the formal definition of continuity	LO1.2A1	EK1.2A1, EK1.2A2, EK1.2A3
Identify points of discontinuity and type		
Find average and instantaneous rates of change	LO2.1A	EK2.1A1, EK2.1A2
Find the equations of tangent and normal lines	LO2.3B	EK2.3B1

Unit 3 Derivatives

Objectives SWBAT:	Learning Objectives	Essential Knowledge
Find derivatives as the limit of the difference quotient	LO2.1A	EK2.1A2, EK2.1A3, EK2.1A4,
or the alternate difference quotient	LO2.1C	EK2.1A5, EK2.1C1
Use proper derivative notation		
Determine where and why a function is not	LO2.2B	EK2.2B1, EK2.2B2
differentiable		
Connect differentiability and continuity		
 Find derivatives using the constant and power rules 	LO2.1C	EK2.1C2
Find derivatives using the product and quotient rules	LO2.1D	EK2.1C4
Find higher-order derivatives		EK2.1D1, EK2.1D2
Use derivatives to solve rectilinear motion problems	LO2.3C	EK2.3C1
involving speed, velocity, and acceleration		
Find derivatives of trigonometric functions	LO2.1C	EK2.1C2
Use the Chain Rule to differentiate composite	LO2.1C	EK2.1C4, EK2.1C3
functions		
Use implicit differentiation to find derivatives of	LO2.1C	EK2.1C5, EK2.1C3

implicitly defined functions		
Find derivatives of inverse trigonometric functions	LO2.1C	EK2.1C2, EK2.1C3
Find derivatives of exponential and logarithmic	LO2.1C	EK2.1C2
functions		EK2.1C3
Find derivatives of inverse functions		EK2.1C6

Unit 4 Applications of Derivatives

Objectives SWBAT:	Learning Objectives	Essential Knowledge
Find extreme values of functions on closed intervals	LO1.2B, LO2.2A	EK1.2B1, EK2.2A1
using the Extreme Value Theorem		
Find values guaranteed by the Mean Value Theorem	LO1.2B	EK1.2B1
Find intervals of increase and decrease	LO2.2A	EK2.2A1
Use the First Derivative Test to determine extrema		EK2.2A2
Find concavity of a function	LO2,2A	EK2.2A1
Use the Second Derivative Test to determine extrema		EK2.2A2
Use the graphs of f, f', and f" to describe	LO2.2A	EK2.2A2
characteristics of each other		EK2.2A3
Solve optimization problems	LO2.3C	EK2.3C3
Estimate values of functions using local linearity	LO2.3B	EK2.3B2
Solve Related Rates word problems	LO2.3A, LO2.3C	EK2.3A1, EK2.3A2, EK2.3C2